Healthy crops in our hands
About us Our company and its history
What we do Our mission, vision, team and solutions
How we do it Efficiency, responsibility and traceability
Technologies Monitoring, mass trapping and mating disruption
Farming
Forestry and gardening
Collaborations
Contact

SEDQ offers a wide range of solutions that respond to the need for effective biological control of pests that is respectful to the environment.

For more information, contact: info@sedq.es
About us
Our company and its history
Experts in sustainable farming

At SEDQ, we have been developing a wide range of sustainable solutions for our clients for over 25 years. This trajectory has made us a benchmark setter in the agricultural sector. And this encourages us to continue researching to discover new, more effective, efficient and environmentally friendly solutions.

SEDQ is an internationally active, consolidated company that belongs to the IBERCLOR group.
About us: Our Company and its history

IBERCLOR
Holding company

QUÍMICA DEL CINCA
Leading producer of water treatment products in southern Europe

SEDQ Healthy Crops
Pioneer in biological products for pest control

ORGANISATION

1 Barcelona
Laboratory and office: Barcelona

2 Monzón
Synthesis and formulation production plant: Huesca

GEOGRAPHICAL SITUATION

INTERNATIONAL PRESENCE

BRAZIL
GERMANY
CHINA
COLOMBIA
ECUADOR
EGYPT
FRANCE
GREECE
ICELAND
ISRAEL
ITALY
JAPAN
KENYA
KOREA
MADAGASCAR
MOROCCO
PERU
PORTUGAL
DOMINICAN REP.
RÉUNION
SOUTH AFRICA
SPAIN
TUNISIA
TURKEY
UNITED KINGDOM
UNITED STATES
SEDQ is a leading company in biological solutions and products for protecting crops. We have extensive experience in the preparation of active ingredients, the development of formulations and the agricultural application of attractants and pheromones.

Our entrepreneurial spirit and our leading position oblige us to be one step ahead in developing innovative technologies and solutions for the sector. That’s why we are committed to R&D.

Barcelona
Our R&D centre has modern facilities for synthesis and escalations and for developing the formulations and resources required to create new systems for application in the field.

Monzón — Huesca
Location of the synthesis plant with large-scale production capacity for synthesising pheromones and pheromone compounds.

The same installations house the formula production plant where we transform pheromones into solutions that are ready for the market.
Creating innovative solutions since 1990

We were established in 1990 and, since the very first day, we have worked to maintain a prominent position in the market. The result is, almost three decades later, that we have become a leading company and benchmark setter in the biological protection sector for crops of all kinds.
What we do

Our mission, vision, team and solutions
Our mission, vision, team and solutions

Our mission is to provide increasingly efficient and effective pest-control systems. We come up with biological solutions based on pheromones and attractants for farmers the world over.

Efficiently protect each plant in every crop; each tree in the forest. We share this goal with millions of farmers. And we can only think of one way to achieve it: to continue expanding our treatment catalogue through research.

That’s why we are firmly committed to research: because only by innovating can we continue to cross borders and offer truly effective and efficient solutions for all types of crops.
A team of experts at your service

To consolidate a solid leading position, a company needs an exceptional team. Because our employees, with their enthusiasm and ongoing commitment to taking one step further every day, create a differential advantage over the competition.

Even seemingly perfect solutions can be improved

Our field work enables us to develop the best solutions for each individual need. But it also drives us to improve even the products that seemed perfect: higher levels of persistence, improvements in applicability, ease of handling and biodegradability.

We work on solutions for biological protection in the:

AGRICULTURAL, FORESTRY AND GARDENING SECTORS

— Synthesis of pheromones and attractants.

— Formulation of products for field application in: flight tracking, mass trapping and mating disruption of insects.

COMPANIES AND OFFICIAL AGENCIES

— Research, development, and application of new processes for synthesising pheromonal components.

— Design, research, and development of new diffusers and application systems.
How we do it

Effectiveness, responsibility and traceability
Our challenge is to protect each crop effectively and responsibly.

For us, creating environmentally friendly solutions that guarantee healthy production is something more than a resolution: it is an unrenounceable objective.

To be at your side throughout the crop cycle: that is our commitment.

All farmers have a commitment to society to provide clearly and reliably traceable food. And our commitment is to be at their side to ensure they achieve it.

Moreover, a healthy harvest without waste is the best guarantee for profitability and sustainability.
Technologies
Monitoring, mass trapping and mating disruption
The importance of monitoring

Monitoring enables us to determine whether a pest is present in a crop and, if present, its extent. It also indicates whether we need to apply a specific treatment for controlling the pest, and helps us decide when the best time is to do so. This prevents excessive use of insecticides and minimises the level of residues on the harvest.
SEDQ has a range of traps and monitoring diffusers for tracking many species of interest in the agricultural and forestry fields.

USE

The use of monitoring traps is currently very widespread for a great many insect species and orders.

LIMITATIONS

Monitoring allows for the tracking of an infestation, though it is not a control method in itself.
Control by mass trapping

This technique is based on strategically placing a number of traps. Each one contains an attractant and/or pheromone specific to the species that needs to be controlled as well as a small dose of insecticide which, located inside the trap, acts on the pest in a way that is safe for the crops.

This way, the crop can be protected by eliminating a high proportion of individuals using an environmentally friendly method that has no adverse effects on the health of the producer or the end consumer.
USE

This is a highly effective control technique and is widely used for controlling diptera such as *Ceratitis capitate*. It is also used for controlling beetles, as is the case with the palm weevil, or *Rhynchophorus ferrugineus*, as well as other insects.

LIMITATIONS

It is very efficacious in low- to medium-level pest infestations. When the population is dense, the complementary application of other control methods may be necessary. However, the use of mass trapping can reduce the number of chemical treatments by over 70%.

SEDQ offers a wide range of solutions that have been designed to control specific insects. This guarantees the maximum trapping efficiency.
The effectiveness of mating disruption

This technique consists in saturating the environment with enough pheromone to make it difficult for the male to locate the female. This greatly reduces the number of matings and, consequently prevents the species from reproducing effectively. A single treatment is effective throughout the pest cycle.

This system specifically controls a target species. That is, it does not affect beneficial organisms or non-target species.
USE

This control method is widely used to treat lepidopteran species that attack several crops. An example of this is the extensive and growing application of mating disruption in pests such as Anarsia lineatella on drupes or Lobesia botrana on vines, among others.

LIMITATIONS

The greater the surface area to be treated, the better mating disruption works. It is also highly efficient in low-level or moderate pest infestations. When the species to be controlled is dense, the probability that both sexes are found is greater. So in situations of high density, complementary treatments may be necessary, although the number of applications will be reduced.

SEDQ develops diffusers with optimal emission and duration for controlling target species, which provides adequate crop protection.
Farming
Peach twig borer

Description: The peach twig borer is a lepidopteran with a 10-13 mm wingspan that seriously affects drupes such as the peach, nectarine, and apricot. It can also affect plums and almonds.

Number of annual generations: Normally 3 generations a year.

Damage: Feeding larvae damage buds and shoots, withering them. They also attack the fruit.

CROPS: DRUPES

Product:
- Monitoring
- Mating disruption

<table>
<thead>
<tr>
<th>Product</th>
<th>ANARLAB</th>
<th>ANARTEC</th>
</tr>
</thead>
</table>

Mediterranean fruit fly

Description: The Mediterranean fruit fly is a dipteran, 5-6 mm long. It is one of the most common fruit pests worldwide.

Number of annual generations: Depending on the climate, there may up to 7-8 generations per year.

Damage: The damage is initially caused by the female biting to lay her eggs, opening an entry way for fungi and bacteria. Similarly, the larvae make galleries inside the fruit when feeding. All this produces early ripening and fruit fall with the consequent loss of harvest.

CROPS: CITRUS, DRUPES, POMES, VINES, TROPICAL FRUITS, ETC.

Product:
- Monitoring
- Mass trapping

<table>
<thead>
<tr>
<th>Product</th>
<th>CERATILAB</th>
<th>CERATIPACK</th>
</tr>
</thead>
</table>

Rice borer

Description: The rice borer is a lepidopteran with a 20-28 mm wingspan that causes problems in rice crops in the Mediterranean area, Asia and Australia.

Number of annual generations: In the Mediterranean region, there are generally up to 3 generations a year.

Damage: Larvae pierce the stems to feed on the internal tissues of the rice plant. This greatly weakens the attacked plants, and can significantly affect the productivity of ears in strong attacks.

CROPS: RICE

Product:
- Monitoring
- Mass trapping
- Mating disruption

<table>
<thead>
<tr>
<th>Product</th>
<th>CHILOLAB</th>
<th>CHILOPROTECT</th>
<th>CHILOTEC HC</th>
</tr>
</thead>
</table>

Monitoring

- ANARLAB
- ANARTEC

- CERATILAB
- CERATIPACK

- CHILOLAB
- CHILOPROTECT
- CHILOTEC HC
Honeydew moth

Cryptoblabes gnidiella

CROPS:
CITRUS, POMEGRANATES, PERSIMMON, GRAPES

Description: The honeydew moth is a lepidopteran, 1.5 cm in length, that can attack several crops such as grapes, cotton, citrus, pomegranate and persimmon, among others.

Number of annual generations: Normally 3-5 generations a year.

Damage: Larvae gnaw the surface of the fruits and penetrate them. The attacked fruit changes colour and falls to the ground prematurely. They can also attack the flowers of the crop.

Product:
Monitoring
Mating disruption

<table>
<thead>
<tr>
<th>CRYPTOLAB</th>
<th>CRYPTOTEC</th>
</tr>
</thead>
</table>

Codling moth

Cydia pomonella

CROPS:
POMES

Description: The codling moth is a lepidopteran, 15-22 mm in length, of immense importance in pome fruit trees, especially apple, pear and quince. They can also attack other crops.

Number of annual generations: Normally 3 generations a year.

Damage: The larvae penetrate the fruits, dig galleries to the core and feed on the pulp, making the fruits commercially unsuitable. In case of heavy pest pressure, production loss can be very high.

Product:
Monitoring

<table>
<thead>
<tr>
<th>CYDIALAB</th>
</tr>
</thead>
</table>

Olive fruit fly

Bactrocera oleae

CROPS:
OLIVE

Description: The olive fruit fly is a species of lepidoptera 4-5 mm in length that only attacks the olive tree. It is very serious in the Mediterranean region, parts of Africa and western Asia.

Number of annual generations: Normally 2-4, depending on the climate.

Damage: The damage is caused by the larvae and can be immediate, affecting the size and appearance of the fruit as well as its production. It also causes indirect damage by facilitating secondary invasions of fungi and bacteria that affect the qualities of the fruit and acidify the oil.

Product:
Monitoring
Mass trapping

<table>
<thead>
<tr>
<th>DACUSLAB</th>
<th>FLYPACK DACUS</th>
</tr>
</thead>
</table>
Artichoke moth

Gortyna xanthenes

CROPS: ARTICHOKE

Description: The artichoke moth is a nocturnal lepidopteran, with a 40-50 mm wingspan, that damages the artichoke.

Number of annual generations: Normally a single generation, from September to late November/early December.

Damage: The damage is caused by the larvae which, after nibbling the leaves, bore in through the veins, making galleries until they reach the stem. They can also attack the flowers. The attacked plants lose vigour, and may even die, producing a decline in production.

Product: Monitoring GORTYLAB

Oriental fruit moth

Grapholita molesta

CROPS: DRUPES, POME FRUITS

Description: The oriental fruit moth is a species of lepidoptera with a 10-16 mm wingspan. It mainly affects drupes, such as peaches, nectarines and apricots. It may also cause damage to plum and cherry trees, as well as pome fruits such as apple and pear.

Number of annual generations: Normally there are five generations a year.

Damage: Caterpillars cause damage to shoots and fruit when feeding. The attack on shoots is very serious in young trees.

Product: Monitoring Monitoring GORTYLAB GRAPHOLAB GRAPHOTEC

Cotton bollworm

Helicoverpa armigera

CROPS: HORTICULTURAL, CORN, ORNAMENTAL

Description: The cotton bollworm is a species of lepidoptera with a 35-40 mm wingspan. It attacks a large number of crops such as: tomato, pepper, corn, broccoli, tobacco and cotton. It may attack many others.

Number of annual generations: Normally there are three generations a year, although, depending on the weather conditions, there may be more.

Damage: The caterpillar attacks leaves, shoots and buds, although the most important damages consist in the destruction of flowers and perforations in the fruit. This facilitates the entry of fungi and other pests that cause them to rot.

Product: Monitoring Monitoring ARMILAB
European grapevine moth

Lobesia botrana

CROPS: VINES

Description: The European grapevine moth is a lepidopteran about 7 mm long. It is one of the most common pests of the vine and table grapes.

Number of annual generations: Normally there are 3 generations a year, although in favourable weather conditions there may be a fourth.

Damage: First-generation caterpillars feed on the floral buds and the second and third buds, which are the ones that cause the most significant damages to the fruit, which allows for the entry of secondary fungi such as Botrytis cinerea.

Product:
- Monitoring
- Mating disruption

LOBELAB
LOBETEC

True armyworm moth

Mythimna unipuncta

CROPS: GRASSES (MAINLY CORN)

Description: The true armyworm moth is a lepidopteran with a 3.5-4 cm wingspan. It is a polyphagous pest, mainly attacking cultivated and wild grasses, especially rice, corn and turf.

Number of annual generations: Normally there are 3 generations a year, although there can be more depending on the weather conditions.

Damage: It is a very voracious species; the larvae defoliate the leaves leaving only the central vein. In corn, the attack is usually in rings, from the outer edge towards the inside of the plot.

Product:
- Monitoring

MYTHIMLAB

European corn borer

Ostrinia nubilalis

CROPS: CORN, PEPPER

Description: The European corn borer is a lepidopteran with a 20-35 mm wingspan that attacks a wide variety of cereals, usually corn, as well as other crops, such as a pepper.

Number of annual generations: Normally, 1-6 generations per year, depending on the geographical area.

Damage: Larvae pierce stems and cobs to feed, thus affecting the development and production of the plant.

Product:
- Monitoring

OSTRILAB
Jasmine moth

Palpita unionalis

CROPS: OLIVE, JASMINE

Description: The jasmine moth is a lepidopteran with a 3 cm wingspan. It is a polyphagous species that attacks several crops, mainly olive and jasmine, especially on young plantations.

Number of annual generations: Normally generations overlap each other, and the number can vary between 2–6 depending on the area’s climate.

Damage: Feeding larvae destroy the apex of the shoots. In situations where the pest is prolific, it may attack olives, feeding on the pulp.

Product: Monitoring

PALPILAB

Diamond back moth

Plutella xylostella

CROPS: CRUCIFERS

Description: The diamond back moth is a species of lepidoptera, 8–10 mm in length, globally present. It attacks several species of crucifers, both cultivated and wild, such as cabbage, broccoli, Brussels sprouts and the cauliflower.

Number of annual generations: Normally between 5 and 10 generations per year depending on the climate.

Damage: The larvae eat on the leaves, feeding on their underside without touching the veins. The damage caused can facilitate the entry of other pathogens.

Product: Monitoring

PLUTELAB

Olive moth

Prays oleae

CROPS: OLIVE

Description: The olive moth is a small lepidopteran 6 mm in length that mostly attacks the olive tree.

Number of annual generations: Normally 3 generations a year; each one attacks different parts of the tree.

Damage: The larvae resulting from the first generation (phyllophage) attack leaves and buds; those from the second attack flowers (antofagase) and those from the third attack, the fruit (coprophagase). The damages to the latter are the most serious because they cause the fruits to fall.

Product: Monitoring

PRAYSLAB
Cherry fruit fly

Rhagoletis cerasi

CROPS: CHERRY

Description: The cherry fruit fly is a lepidopteran 3-5 mm in length that attacks only cherry plants.

Number of annual generations: Normally one generation per year. Adults emerge from late April/early May until July.

Damage: The larva, when feeding, digs galleries inside the fruit. The attacked fruits soften and end up rotting or are substandard.

Product:
- Monitoring
- Mass trapping
 - RHAGOLAB
 - FLYPACK CERASI

Almond bark beetle

Scolytus amygdali

CROPS: ALMOND

Description: The almond bark beetle is a coleopteran 2.5-3 mm in length that attacks the almond tree.

Number of annual generations: Normally 4 generations a year; the first adults appear towards the end of February.

Damage: Usually attacks the crop when it is weakened, although it can also affect healthy plantations when there are infested trees or clippings nearby. The borers make galleries in young shoots and buds, causing desiccation.

Product:
- Monitoring
- AMYGDALAB

Mediterranean corn borer

Sesamia nonagrioides

CROPS: CORN

Description: The Mediterranean corn borer is a lepidopteran with a 3.5-4 cm wingspan. It is one of the main species that attack corn in the Mediterranean region.

Number of annual generations: Normally 1-4 annual generations depending on the climate.

Damage: The damage is caused by the larvae penetrating the canes and the cobs when feeding. This weakens the stem, thus reducing the plant’s vigour and decreasing the weight of the grains. Young plants may even die.

Product:
- Monitoring
- Mating disruption
 - SESALAB
 - SESATEC
<table>
<thead>
<tr>
<th>Beet armyworm</th>
<th>Tomato leafminer</th>
<th>Leopard moth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spodoptera exigua</td>
<td>Tuta absoluta</td>
<td>Zeuzera pyrina</td>
</tr>
<tr>
<td>CROPS:</td>
<td>CROPS:</td>
<td>CROPS:</td>
</tr>
<tr>
<td>HORTICULTURAL, HERBACEOUS CROPS, ORNAMENTAL CROPS</td>
<td>TOMATO, POTATO, AUBERGINE</td>
<td>POMES, DRUPES, OLIVE, ETC.</td>
</tr>
</tbody>
</table>

Description: The beet armyworm is a lepidopteran with a 2.5-3 cm wingspan. It can attack a wide variety of crops such as pepper, melon, watermelon, alfalfa, lettuce, or tomato, among others.

Number of annual generations: Normally between 3-6 generations per year, according to the area and the weather conditions.

Damage: The larvae feed on the green parts and fruit of the crop, damaging them. They can also attack shoots and flowers.

Product: Monitoring Mating disruption EXILAB EXITEC

Description: The tomato leafminer is a lepidopteran with 10 mm wingspan; it causes damage to tomato, aubergine and other Solanaceae, although it has a preference for tomatoes.

Number of annual generations: Normally there are up to 12 generations a year.

Damage: Larvae damage leaves, stems and fruits, creating galleries and perforations. In stems, the galleries can affect the plant’s development. The fruits, once attacked, can be affected by other pathogens.

Product: Monitoring Mating disruption TUTALAB LT TUTATEC

Description: The leopard moth is a lepidopteran with a 35-70 mm wingspan. It is a polyphagous species that attacks several varieties of pomes and drupes, especially apple and pear trees.

Number of annual generations: Normally one generation per year.

Damage: The larvae dig galleries in trunks and branches to feed, causing drying and later breakage by wind action. In young plantations, the attack may even kill the plant.

Product: Monitoring Mating disruption ZEULAB ZEUTEC

You can consult and download the full file of each of these treatments from sedq.es
Forestry and gardening
Engraver beetle

Ips acuminatus

AFFECTED TREES: PINE TREES

Description: *Ips acuminatus* is a small coleopteran, from 2.2 to 4 mm in length, that severely damages pine forests in Europe and parts of Asia, with special emphasis on wild pine.

Number of annual generations: Normally 2 generations per year.

Damage: Damage occurs inside the trunks and branches. Initially damage is caused by adults that bore laying galleries, and subsequently the larvae damage the tree them when they feed on the phloem tissue. They may kill the pine.

Product:

- Monitoring
- Mass trapping

 ACUMILAB
 ACUMIPROTECT

Six-spined engraver beetle

Ips sexdentatus

AFFECTED TREES: PINE TREES

Description: The six-spined engraver beetle is a coleopteran, 5.5–8.2 mm in length that poses a very serious threat to pines. The most susceptible species are the Scots pine, and the black and maritime pine.

Number of annual generations: Normally from 1 to 5 generations a year depending on the weather; in the Mediterranean there are usually 3.

Damage: Usually attacks weakened trees or dying ones, but when the population is high they may attack healthy ones. They dig galleries under the bark of the tree to feed on the phloem. This gallery construction paralyzes the flow of sap, and can kill the affected tree.

Product:

- Monitoring
- Mass trapping

 IPSLAB
 IPSPROTECT

Gypsy moth

Lymantria dispar

AFFECTED TREES: HOLM OAK, CORK OAK

Description: The gypsy moth is a lepidopteran with a 35–65 mm wingspan that causes damage to holm oak, cork oak, although it can affect other species.

Number of annual generations: Normally one generation a year.

Damage: The damage is caused by the larvae when feeding. First, they feed on the buds, then on the leaves. In times of high population, they can totally defoliate a tree, affecting its growth and the consequent production of fruit.

Product:

- Monitoring

 DISPARLAB
Pine sawyer beetle

Monochamus galloprovincialis

AFFECTED TREES: MAINLY PINE

Description: The pine sawyer beetle is a coleopteran of 12-26 mm in length. It is a secondary insect that lives and feeds on dead or weakened pine trees. It is found in specimens of the genus *Pinus*, and also in species of the genera *Abies*, *Picea* and *Larix*.

Number of annual generations: Normally a single generation, with adults appearing from June to August.

Damage: This insect is significant because it may be a vector of the pine nematode *Bursaphelenchus xylophilus*, responsible for the wilting or the death of the pine.

Product:
- Monitoring
- Mass trapping
 - GALLOLAB
 - GALLOPROTECT 2D
 - GALLOPROTECT PACK

Dusky clearwing

Paranthrene tabaniformis

AFFECTED TREES: COTTONWOOD, WILLOW

Description: Lepidopteran with a 20-35 mm wingspan that attacks cottonwoods and willows.

Number of annual generations: One generation per year.

Damage: The larvae dig galleries in the trunks and branches of the tree when feeding. The damage to the branches weaken them and they may break in the wind. In general, the galleries affect the quality of the wood, making it unusable commercially. The wounds also facilitate entry of secondary pathogens.

Product:
- Monitoring
 - PARANTLAB

Hornet moth

Sesia apiformis

AFFECTED TREES: MAINLY COTTONWOOD

Description: The hornet moth is a perforating lepidopteran, 35-45 mm in size that mainly affects the cottonwood, but can also attack other trees such as willows, birches and alders.

Number of annual generations: This species needs at least 2 years to complete its biological cycle.

Damage: The larvae make descending galleries at the base of the trunk and roots. These galleries break the conductive tissues affecting the circulation of the sap and weaken the tree. In many cases the affected areas break in the wind. The wood of the tree may also be affected.

Product:
- Monitoring
 - SESIALAB
Forestry and gardening

Pine processionary

Thaumetopoea pityocampa

AFFECTED TREES: PINE, CEDAR

Description: The pine processionary is a lepidopteran 30-50 mm in span that causes significant damage to pine trees, although it can also affect firs and cedars.

Number of annual generations: One generation per year.

Damage: The damage is caused by the caterpillars that feed on the needles, defoliating and weakening the tree, making it more susceptible to attack by other insects or other organisms. Moreover, the caterpillars are covered with urticating hairs that detach and float in the air, which can cause severe irritation and allergic reactions.

Product:
- Monitoring
- Mass trapping

 PITYOLAB
 PITYOPROTECT

Pine shoot moth

Rhyacionia buoliana

AFFECTED TREES: PINE

Description: The pine shoot moth is a lepidopteran 21-23 mm in size that feeds on species of the *Pinus* genus, especially *P. nigra*, *P. pinea* and *P. halepensis*.

Number of annual generations: Up to two generations a year, although normally there is only one.

Damage: The larvae feed on the buds and shoots of the pines causing killing or deforming them, and deforming the tree or stulting its growth.

Product:
- Monitoring

 RHYACIOLAB

Oak processionary

Thaumetopoea processionea

AFFECTED TREES: OAK

Description: The oak processionary is with a 25-35 mm wingspan from central and southern Europe that attacks the oak.

Number of annual generations: One generation per year.

Damage: The larvae cause massive defoliation when feeding, reducing the viability of the tree. They also carry urticating hairs that may cause allergic reactions.

Product:
- Monitoring

 PROCESSILAB
Red palm weevil

Rhynchophorus ferrugineus

AFFECTED TREES:
Palm

Description: The red palm weevil species of Lepidoptera is 2-5 mm in length and a very serious pest that attacks palm trees. Within the species that it affects, it prefers the Canary Island Date Palms.

Number of annual generations: Normally 3-4 generations per year. The species is prolific and colonies spread very rapidly.

Damage: The most severe damage is caused by the larvae that feed inside the palm tree by making galleries. If the attack affects the apical bud, the palm will die.

Product:
- Monitoring
- Mass trapping

RHYNCHOLAB
RHYNCHOPROTECT

You can consult and download the full file of each of these treatments on the web sedq.es
Collaborations
Much more than a reliable partner

Our commitment to innovation begins with conceptualising new pest treatment systems and methods. Our R&D department is constantly searching for new products. The result is know-how that drives us to collaborate, contributing knowledge or developing tailored solutions with prominent companies and institutions on the national and international markets.
SEDQ offers much more than pheromones, attractants and chemical formulations: we also offer knowledge and experience. That is what has opened the doors for us to work hand in hand with large companies, institutions and public organisations across the world.

We see collaboration as a process of mutual enrichment because it allows us to develop effective solutions for our collaborators and, at the same time, obliges us to constantly set ourselves new challenges.

SEDQ is a member and founder of the IBMA (International Biocontrol Manufacturers Association).

SEDQ is part of the task force for registering active ingredients, pheromones and pheromone compounds in the European Union.
Barcelona
Laboratory and office
C/ Llull, 41
08005 Barcelona
Tel. +34 93 719 04 71
Fax +34 93 719 47 90
info@sedq.es
www.sedq.es

Monzón
Production, synthesis
production plant
Camino del Aciprés, s/n
Polígono Industrial Las Paules
22400 Monzón, Huesca
Tel. +34 974 400 333
info@sedq.es
www.sedq.es